
Saratoga: scalable, speedy���
data delivery for sensor

networks	

Private sensor networks	

• Must deliver sensor data – very quickly.	

• Want to use Internet technologies – cheap, reliable, robust.	

• Want more speed than TCP can offer.	

• Congestion is not a problem; private single-owner managed
network with scheduled traffic, single flow per link with no
competition. This is not the shared public Internet!	

•  Sensor capabilities are ever-increasing (side-effects of Moore’s
law). Need to scale for ever-growing data sizes.	

•  Support for streaming and simultaneous delivery to multiple
receivers is also useful.	

•  Saratoga protocol designed to meet these needs.	

NASA Glenn uses Saratoga to test DTN and
Interplanetary Internet on UK-DMC, 2008.	

Saratoga’s development	

Surrey Satellite Technology Ltd	

developed Saratoga for imagery download	

from its Disaster Monitoring satellites, 2003.	

CSIRO	

Saratoga for radio astronomy	

extremely high data rates	

NASA Glenn Research Center	

Saratoga for sensors on UAVs	

Saratoga redesigned, specified to the
Internet Engineering Task Force, 2007.	

Multiple Saratoga implementations	

in progress with interoperability testing.	

Research led to new use	

•  SSTL remote-sensing images grew to cross 4GiB file

size, needing >32-bit pointers.	

•  How to design a scalable file transfer protocol able to
handle any size file, without requiring separate
incompatible implementations for big files?	

•  Solved this problem with 16/32/64/128-bit pointers
and advertising capabilities.	

•  Support for scalability and streaming introduced new
users – high-speed networking for radio astronomy in
Very Long Baseline Interferometers.	

not needed -	

yet!	

5	

What is Saratoga ?	

•  Version 0 developed by Surrey Satellite Technology Limited (SSTL) as a replacement to
CFDP for simple high speed, low processing, file delivery from Low Earth Orbit to
Ground over highly asymmetric links.	

•  Saratoga is a high-speed, UDP-based, peer-to-peer protocol, providing error-free
guaranteed delivery of files, or streaming of data.	

•  Send data packets out as fast as you can. No specified congestion control is required,
since data is usually only going one hop over a private link, or across high-speed, low-
congestion private networks.	

•  Some implementations have a rate-limiting option for restricted downstream links where
line rate may not match downstream radio link	

•  No specified timers means no timeouts, so Saratoga is ideal for very long propagation
delay networks (such as deep space).	

•  Every so often the transmitter asks for an acknowledgement from the file receiver. The
receiver can also send acks if it thinks it needs to, or to start/restart/finish a transfer. 	

•  Acks are Selective Negative Acknowledgements (SNACKs) indicating received packets,
and any gaps to fill with resent data, including information so that intelligent sender rate
control or congestion control can be provided if needed. 	

•  Any multiplexing of flows is done by the Saratoga peers.	

•  Saratoga is an excellent protocol to use in asymmetric network topologies. 	

6	

Saratoga is a reliable transport over UDP	

Simple sliding window with selective acknowledgments.	

•  The HOLESTOFILL list on the receiver requests the transmitter to
re-send frames that have not been properly received (a SNACK) by
sending a STATUS with the list of HOLESTOFILL.	

•  The receive window only advances when offsets are contiguous. The
left edge of the transmit window does not advance until the holes
have been acknowledged by a HOLESTOFILL frame with an advanced
offset. 	

•  The UDP checksum is used per packet to cover both the header and
payload. It is consistent, but not that strong (one’s complement), and
does not provide end-to-end guarantees for payloads sent using
multiple packets.	

•  An optional end-to-end checksum, using one of CRC32/MD5/SHA-1,
over the entire file being transferred, increases confidence that a
reliable copy has been made, and that fragments have been
reassembled correctly.	

7	

Optional features of Saratoga version 1

Specified to the IETF in an experimental internet-draft. Adds features.	

Major features	

•  Scalable to handle large files. 16-bit descriptors for efficiency with small files.
128-bit descriptors cope with huge files up to 2128 bytes. 32- and 64-bit
descriptors most useful.	

•  Streaming of data is supported. This allows Saratoga to be used for real-time
delivery outside the file-based store-and-forward paradigm.	

Minor features	

•  Supports link-local multicast to advertise presence, discover peers and for
delivery to multiple receivers simultaneously for e.g. file or code image updates.
(Will outperform TFTP trivial file transfer.)	

•  Optional UDP-Lite use for tolerating errors in payloads and minimizing
checksum computation overhead. The UDP-Lite checksum covers a minimum of
IP/UDP-Lite/Saratoga headers. The header content is always checked so that the
information about the data is error-free.	

•  Optional “DTN bundle” delivery as a “bundle convergence layer”. Shown with
tests from the UK-DMC satellite.	

8	

What Saratoga does not do

•  There is no MTU discovery mechanism, so you have to know the maximum
packet size your network can transmit at. i.e. dictated by the frame size. This is
okay for your own private network, but would be troublesome if used across
the Internet.	

•  Saratoga does not include “slow-start” or congestion control.
That is considered bad and unsociable behaviour on the Internet. Saratoga just
blasts away on a link with no regard for other flows - which is the exact
behaviour that makes it desirable in private networks and these environments!	

•  Simulations have shown that it is possible to implement congestion control

mechanisms in Saratoga if desired - see our parallel University of Oklahoma
paper describing Sender-Based TCP Friendly Rate Control.	

•  Saratoga’s timestamp option can be used to implement such closed-loop

mechanisms.	

•  Simple open-loop rate-limiting output to XMbps can also allow Saratoga to

coexist with other traffic.	

9	

Saratoga Transactions	

GET	
 Get a named file from the peer"

GETDIR	
 Get a directory listing of files from the peer"

PUT	
 Put a named file or stream data to the peer"

PUTDIR	
 Put a directory listing of local files to the peer"

DELETE	
 Delete a named file from the peer"

Saratoga Frame Types

BEACON	
 Sent periodically. Describes the Saratoga peer: 	

Identity (e.g. EID) 	

capability/desire to send/receive packets. 	

max. file descriptor handled: 16/32/64/128-bit. 	

REQUEST	
 Asks for a file initiating ‘get’ transaction	

get file	

get directory listing	

delete a file.	

METADATA	
 Sent at start of transaction. Initiates a ‘put’ transaction.	

Describes the file, bundle or stream: 	

set identity for transaction	

file name/details, including size. 	

set descriptor size offsets to be used for this transaction 	

(16/32/64/128-bit pointer sizes.)	

DATA	
 Actual Data. 	

Uses descriptor of chosen size to indicate offset for data segment
in the file/bundle or stream.	

May request an ‘ack’ (send me a holestofill). 	

STATUS	
 Missing Data Offsets / Error & Status Messages	

Selective negative ack (‘snack’) HOLESTOFILL data.	

Set left window edge for successful transfer so far 	

List of offsets and lengths indicate missing ‘holes’ in data.	

11	

Transaction GET or GETDIR

Receiver	
 Sender	

REQUEST	

METADATA	

DATA 1	

DATA 2	

DATA 3	

DATA 4	

STATUS	
 optional / resume transfer	

DATA 3	
frame lost	

DATA 5	

STATUS	
 I need 3 again	

STATUS	
 All received OK	

11	

12	

Transaction PUT or PUTDIR

Receiver	
 Sender	

METADATA	

DATA 1	

DATA 2	

DATA 3	

DATA 5	

DATA 3	
frame lost	

DATA 4	

STATUS	
 I need 3 again	

STATUS	
 All received OK	

13	

Saratoga Version 1 implementations	

PERL (NASA Glenn Research Center)	

•  Sequential file transfer	

•  Rate-limiting implemented	

C++ (NASA Glenn Research Center)	

•  Discovery	

•  Multiplexed file transfer	

•  Hooks for bundling and streaming	

•  Rate-limiting to be implemented	

C (Charles Smith under contract to Cisco Systems)	

•  Implementation licensed to CSIRO by Cisco	

•  Built for Speed (Raw I/O)	

•  Streaming to be implemented in FPGA	

•  File transfer may be implemented in FPGA	

Wireshark Dissector (Charles Smith)	

We hope to make some of these implementations available to the public.	

14	

Conclusions	

•  Saratoga is a simple, reliable, transport protocol that can be

implemented on low-power low-speed embedded systems, and still
give high performance. Should also be implementable in FPGAs and
ASICs.	

•  If you have a high-speed private network and you want to get as
much data as possible moved quickly and reliably between peers, then
you need a simple, reliable transport protocol. 	

•  Saratoga is a good choice for this application space. (That’s why

Saratoga has been in use since 2004 to download images from
SSTL’s DMC satellites.)	

•  Radio astronomy has high-speed private networks, and needs to
move a massive amount of data around. So we’re implementing
Saratoga for radio astronomy.	

15	

Development Strategy	

•  We plan to take Saratoga Version 1 through as an individual

submission for Experimental status. 	

•  Rational: Keep the current implementations moving along and

maintain interoperability. 	

•  Keep detailed discussion on Version 1 to Google Groups

saratoga-discussion list	

•  Those interested in joining that list, please contact Lloyd

Wood (lloyd.wood@gmail.com)	

•  After working with Version 1 and if there is sufficient interest,
then see if TSVWG would be interested in taking this on as a
working group document "Saratoga Version 2”.	

•  Comments / Suggestions	

Implementations underway	

The public Saratoga specification has led to:	

•  a mature internet-draft, aiming for IETF RFC.	

•  multiple independent implementations	

	
(SSTL, NASA Glenn, CSIRO and Cisco Systems)	

	
with interoperability testing underway.	

•  a simulator showing that TCP friendliness can be
supported (University of Oklahoma)	

Identified uses for Saratoga data delivery:	

•  remote-sensing Earth data from satellites

(SSTL) and UAVs (NASA Glenn)	

•  high-end radio astronomy sensor data and

processed data cubes (Square Kilometre Array)	

•  other applications in private networks and	

	
in supercomputing.	

•  could even replace TFTP for fast network booting of

Cisco routers and phones...	

17	

Why Saratoga instead of FTP/TCP ?

• For high throughput and link utilization on dedicated links, where a
single TCP flow cannot fill the link to capacity.

• For links where TCP’s assumptions about loss/congestion/
competition simply don’t hold. i.e. High speed bulk transfer.

• There is no such thing as “slow-start” specified in Saratoga.

• Able to cope with high forward/back network asymmetry (>850:1).

• Long path-delay use – eventually TCP will fail to open a connection
because its SYN/ACK exchange won’t complete. TCP has many
unwanted timers.

• Simplicity. TCP is really for a conversation between two hosts; needs
a lot of code on top to make it transfer files. A focus on just moving files
or streams of data makes sequence numbering simpler.

• Having SNACKs means that handling a sequence number
wraparound when in streaming or bundling mode becomes easy.

18	

Why Saratoga instead of FTP/TCP ?

time t

tra
ns

fe
r r

at
e

M
bp

s channel errors leads to
packet losses and resends

TCP
slow start mode

TCP congestion
avoidance mode

TCP fast recovery
cuts its rate

Saratoga

TCP

TCP assumes loss indicates
congestion and slows its rate

header overheads

link rate

link capacity
unused by TCP

Saratoga’s approach	

	
Run as fast as possible, at maximum possible rate over a private dedicated

link. Deliberately don’t emulate TCP’s cautious congestion-control
behaviour.	

	
(‘TCP friendly’ behaviour can be added without changing packets.)	

A single TCP flow can’t fill a link –	

reaches capacity, then backs off.	

A single Saratoga flow can take advantage
of all the available capacity.	

time t/
s	

th
ro

u
gh

p
u

t/
 k

b
p

s	

time t 	

th
ro

u
gh

p
u

t/
 k

b
p

s	

channel errors leads to	

packet losses and resends	

TCP	

slow start mode	

TCP congestion	

avoidance mode	

TCP fast recovery	

cuts its rate	

Saratoga	

TCP	
TCP assumes loss indicates 	

congestion and slows its rate	

header overheads	

link rate	

link capacity	

unused by TCP	

